

# Application of rare earths in consumer electronics and challenges for recycling

ICCE 2011, 08.09.2011

Ran Liu Matthias Buchert Stefanie Dittrich Andreas Manhart Cornelia Merz Doris Schüler



# Contents



- Rare earth elements
- Global production and reserves
- Environmental aspects of rare earth during mining and processing
- Rare earths used in consumer electronics
- Developing a recycling scheme
- Conclusions

www.oe

#### **Rare Earth Elements (REEs)**



3



LREE: lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), and scandium (Sc)

HREE: yttrium (Y), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu)

#### **Global production and reserves**



- Global production in 2010: 133 600 t
- Reserves according to USGS: 110 000 000 t (factor 823)

(reserve which can be economically extracted)

World Mine production in 2010

(USGS 2011). REO: rare earth oxide

| Country      | t REO   | Share  |
|--------------|---------|--------|
| China        | 130 000 | 97,3%  |
| Brazil       | 550     | 0,4%   |
| India        | 2 700   | 2,0%   |
| Malaysia     | 350     | 0,3%   |
| World Total* | 133 600 | 100,0% |

\* without 20 000 t REO illegal mining

Rare earth reserves by countries (USGS 2011)



www.oeko.o

# Global demand and development of the demand



2008



#### Unit: t REO per year

Source: Compiled by Oeko-Institut from the sources Jefferies 2010, Oakdene Hollins 2010, Kingsnorth 2010, GWMG 2010, BGR 2009 and Lynas 2010



#### **Rare earths used in consumer electronics**

| Products                 | Rare earth/Components | Amount   | Unit   |
|--------------------------|-----------------------|----------|--------|
| Variable-frequency air   |                       | 100-200  | g/unit |
| conditioning             | NdFeB                 | 250      | g/unit |
| DVD Player/DVD           |                       |          |        |
| ROM/Driver               | NdFeB                 | 5        | g/unit |
|                          |                       | 500      | g/unit |
| E-Bike                   | NdFeB                 | 300      | g/unit |
|                          |                       | 15       | g/unit |
| Hard disc drives (HDD)   | NdFeB                 | 22       | g/unit |
|                          | Magnet                | 153      | g/unit |
| Loudspeaker              | NdFeB                 | 50       | g/unit |
| Mobil phone              | Permanent magnet      | 5        | g/unit |
| Mobil phone              | light phosphors       | 0.006    | g/unit |
| Laptop                   | light phosphors       | 0.05-0.6 | g/unit |
| LCD TV                   | light phosphors       | 4.5-6    | g/unit |
| Plasma TV                | light phosphors       | 100-125  | g/unit |
| LCD Display              | light phosphors       | 1.5-2.5  | g/unit |
|                          | Lanthanum             | 0.35     | g/unit |
|                          | Cerium                | 0.46     | g/unit |
|                          | Europium              | 0.20     | g/unit |
| fluorescent lamp (market | Terbium               | 0.19     | g/unit |
| average)                 | Yttrium               | 2.87     | g/unit |

Example: NdFeB: 15g/unit HDD shipment in 2010: 651 million

www.oeko.d

9765t NdFeB≈3039t REO

 $\rightarrow$  13% of global demand of rare earth for magnets

### **Global magnet production**





# **Energy efficient lighting**



- Most new energy efficient lighting systems contain rare earths (compact fluorescent lamps, LED, plasma displays, LCD displays)
- High growth rates due to the ban on classic incandescent bulbs, dissemination of LEDs and shift to plasma and LCD displays
- Substitutions are rare. Substitutions are rare. R & D required for alternative phosphors with high efficiency and high light quality

#### **Development of prices**





#### **Risks of REE mining without Environmental Protection Systems**







- Secondary REE potential in Europe.
- Lower dependency on foreign material supply.
- Build-up of know-how on rare earth processing.
- No radioactive waste in processing.
- Environmental benefits regarding air emissions. groundwater protection, acidification, eutrophication and climate protection.

### **Developing a recycling scheme**







#### Green technologies call for "green metals"

- There are manifold initiatives for sustainable mining.
- Among them are certification schemes addressing different problems:
  - Environmental, small-scale mining, safety issues, human rights.
- Increasing interest in politics and industry on certified minerals
- Today's mining companies could be interested in certification schemes or similar co-operations in order to highlight their environmental efforts.
- The Analytical Fingerprint is a control instrument if other control mechanism fail.

# Conclusions



 Identification of REE with high relevance: Dysprosium; Terbium; Yttrium; Lanthanum; Neodymium; Europium; Praseodymium

- potential shortages in the short-term
- important role in Green Technologies

 Rare Earth Mining and Processing shows high environmental risks → sustainable mining initiatives like certification schemes should be integrated into an environmentally sound strategy.

- R & D needed for <u>all applications</u> concerning
  - avoidance / substitution
  - higher material efficiency
  - recycling



#### Thank you for your attention!

The work which led to the results presented here was financed by: the Greens/European Free Alliance

in the European Parliament.



More detailed information can be found on the following websites: <u>www.oeko.de</u> <u>www.resourcefever.org</u>